Search results for " Algebraic topology"

showing 10 items of 19 documents

Topology-based goodness-of-fit tests for sliced spatial data

2023

In materials science and many other application domains, 3D information can often only be extrapolated by taking 2D slices. In topological data analysis, persistence vineyards have emerged as a powerful tool to take into account topological features stretching over several slices. In the present paper, we illustrate how persistence vineyards can be used to design rigorous statistical hypothesis tests for 3D microstructure models based on data from 2D slices. More precisely, by establishing the asymptotic normality of suitable longitudinal and cross-sectional summary statistics, we devise goodness-of-fit tests that become asymptotically exact in large sampling windows. We illustrate the test…

Computational Geometry (cs.CG)FOS: Computer and information sciencesStatistics and ProbabilityGoodness-of-fit testsApplied MathematicsTopological data analysisPersistence diagramMathematics - Statistics TheoryStatistics Theory (math.ST)VineyardsMaterials scienceComputational MathematicsComputational Theory and Mathematics60F05Topological data analysis Persistence diagram Materials science Vineyards Goodness-of-fit tests Asymptotic normalityFOS: MathematicsAlgebraic Topology (math.AT)Computer Science - Computational GeometryAsymptotic normalityMathematics - Algebraic TopologyComputational Statistics & Data Analysis
researchProduct

Chiralities of nodal points along high symmetry lines with screw rotation symmetry

2021

Screw rotations in nonsymmorphic space group symmetries induce the presence of hourglass and accordion shape band structures along screw invariant lines whenever spin-orbit coupling is nonnegligible. These structures induce topological enforced Weyl points on the band intersections. In this work we show that the chirality of each Weyl point is related to the representations of the cyclic group on the bands that form the intersection. To achieve this, we calculate the Picard group of isomorphism classes of complex line bundles over the 2-dimensional sphere with cyclic group action, and we show how the chirality (Chern number) relates to the eigenvalues of the rotation action on the rotation …

Condensed Matter - Materials ScienceChern classComplex lineMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCyclic group02 engineering and technology021001 nanoscience & nanotechnologyCoupling (probability)01 natural sciences0103 physical sciencesHomogeneous spaceFOS: MathematicsAlgebraic Topology (math.AT)Equivariant mapMathematics - Algebraic TopologyInvariant (mathematics)Symmetry (geometry)010306 general physics0210 nano-technologyMathematical physics
researchProduct

Conjugacy problem for braid groups and Garside groups

2003

We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).

Conjugacy problemBraid group20F36Geometric topologyGarside groupsGroup Theory (math.GR)0102 computer and information sciencesAlgebraic topology01 natural sciencesTorus knotCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Quantum AlgebraFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematics20F36; 20F10MathematicsSmall Gaussian groupsAlgebra and Number Theory010102 general mathematicsConjugacy problemBraid groupsGeometric Topology (math.GT)Braid theoryMathematics::Geometric TopologyArtin groups010201 computation theory & mathematicsArtin group20F10Mathematics - Group TheoryGroup theory
researchProduct

Quasinodal lines in rhombohedral magnetic materials

2021

A well-established result in condensed matter physics states that materials crystallizing in symmetry groups containing glide reflection symmetries possess nodal lines on the energy bands. These nodal lines are topologically protected and appear on the fixed planes of the reflection in reciprocal space. In the presence of inversion symmetry, the energy bands are degenerate and the nodal lines on the fixed plane may hybridize or may cross. In the former case, the crossing is avoided, thus producing lines on reciprocal space where the energy gap is small, and in the latter, the nodal lines will endure, thus producing Dirac or double nodal lines. In addition, if the material crystallizes in a …

CrystallographyCondensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: MathematicsMaterials Science (cond-mat.mtrl-sci)Algebraic Topology (math.AT)FOS: Physical sciencesTrigonal crystal systemMathematics - Algebraic Topology
researchProduct

On operads, bimodules and analytic functors

2017

We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.

General Mathematics0102 computer and information sciences01 natural sciencesMathematics::Algebraic TopologyQuantitative Biology::Cell BehaviorMathematics::K-Theory and HomologyMathematics::Quantum AlgebraMathematics::Category Theory18D50 55P48 18D05 18C15FOS: MathematicsAlgebraic Topology (math.AT)Category Theory (math.CT)Mathematics - Algebraic Topology0101 mathematicsMathematicsFunctorOperad bimodule analytic functor bicategoryTheoryMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsOrder (ring theory)Mathematics - Category Theory16. Peace & justiceBicategoryAlgebraCartesian closed category010201 computation theory & mathematicsBimodule
researchProduct

Khovanov homology for signed divides

2009

The purpose of this paper is to interpret polynomial invariants of strongly invertible links in terms of Khovanov homology theory. To a divide, that is a proper generic immersion of a finite number of copies of the unit interval and circles in a [math] –disc, one can associate a strongly invertible link in the [math] –sphere. This can be generalized to signed divides: divides with [math] or [math] sign assignment to each crossing point. Conversely, to any link [math] that is strongly invertible for an involution [math] , one can associate a signed divide. Two strongly invertible links that are isotopic through an isotopy respecting the involution are called strongly equivalent. Such isotopi…

Khovanov homologyPure mathematicsDivides[ MATH.MATH-AT ] Mathematics [math]/Algebraic Topology [math.AT]Homology (mathematics)01 natural scienceslaw.inventionMorse signed dividessymbols.namesakelawEuler characteristic0103 physical sciencesFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematicsInvariant (mathematics)Finite setMathematicsKhovanov homology010102 general mathematics16. Peace & justiceInvertible matrix57M27[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]IsotopysymbolsStrongly invertible links010307 mathematical physicsGeometry and TopologyVector space
researchProduct

Topological electronic structure and Weyl points in nonsymmorphic hexagonal materials

2020

Using topological band theory analysis we show that the nonsymmorphic symmetry operations in hexagonal lattices enforce Weyl points at the screw-invariant high-symmetry lines of the band structure. The corepresentation theory and connectivity group theory show that Weyl points are generated by band crossings in accordion-like and hourglass-like dispersion relations. These Weyl points are stable against weak perturbations and are protected by the screw rotation symmetry. Based on first-principles calculations we found a complete agreement between the topological predicted energy dispersion relations and real hexagonal materials. Topological charge (chirality) and Berry curvature calculations…

Materials scienceSymmetry operationPhysics and Astronomy (miscellaneous)FOS: Physical sciences02 engineering and technologyAlgebraic topologyTopology01 natural sciencesDispersion relationMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesFOS: MathematicsAlgebraic Topology (math.AT)General Materials ScienceMathematics - Algebraic Topology010306 general physicsTopological quantum numberCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)Charge (physics)021001 nanoscience & nanotechnologyCoupling (probability)Berry connection and curvature0210 nano-technologyGroup theory
researchProduct

Geometric models for algebraic suspensions

2021

We analyze the question of which motivic homotopy types admit smooth schemes as representatives. We show that given a pointed smooth affine scheme $X$ and an embedding into affine space, the affine deformation space of the embedding gives a model for the ${\mathbb P}^1$ suspension of $X$; we also analyze a host of variations on this observation. Our approach yields many examples of ${\mathbb A}^1$-$(n-1)$-connected smooth affine $2n$-folds and strictly quasi-affine ${\mathbb A}^1$-contractible smooth schemes.

Mathematics - Algebraic GeometryMathematics - Geometric Topology14F42 14D06 55P40General MathematicsMathematics - K-Theory and HomologyFOS: Mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Algebraic Topology (math.AT)Geometric Topology (math.GT)K-Theory and Homology (math.KT)[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Algebraic TopologyAlgebraic Geometry (math.AG)
researchProduct

A Classification of Modular Functors via Factorization Homology

2022

Modular functors are traditionally defined as systems of projective representations of mapping class groups of surfaces that are compatible with gluing. They can formally be described as modular algebras over central extensions of the modular surface operad, with the values of the algebra lying in a suitable symmetric monoidal $(2,1)$-category $\mathcal{S}$ of linear categories. In this paper, we prove that modular functors in $\mathcal{S}$ are equivalent to self-dual balanced braided algebras $\mathcal{A}$ in $\mathcal{S}$ (a categorification of the notion of a commutative Frobenius algebra) for which a condition formulated in terms of factorization homology with coefficients in $\mathcal{…

Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Algebraic Topology (math.AT)[MATH] Mathematics [math]Mathematics - Algebraic TopologyRepresentation Theory (math.RT)Mathematics - Representation Theory
researchProduct

The distinguished invertible object as ribbon dualizing object in the Drinfeld center

2022

We prove that the Drinfeld center $Z(\mathcal{C})$ of a pivotal finite tensor category $\mathcal{C}$ comes with the structure of a ribbon Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. Phrased operadically, this makes $Z(\mathcal{C})$ into a cyclic algebra over the framed $E_2$-operad. The underlying object of the dualizing object is the distinguished invertible object of $\mathcal{C}$ appearing in the well-known Radford isomorphism of Etingof-Nikshych-Ostrik. Up to equivalence, this is the unique ribbon Grothendieck-Verdier structure on $Z(\mathcal{C})$ extending the canonical balanced braided structure that $Z(\mathcal{C})$ already comes equipped with. The duality fun…

Mathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)Algebraic Topology (math.AT)[MATH] Mathematics [math]Mathematics - Algebraic Topology[MATH]Mathematics [math]Representation Theory (math.RT)Mathematics - Representation Theory
researchProduct